Engineering Perspective

ISSN: 2757-9077

Sign in Register

A Study of Modified Nanofluid Flow Over an Exponentially Stretching Surface With Inclined Magnetic Field and Porous Media

Author:

Number of pages:
125-129
Language:
English
Year-Number:
2024-3

Keywords


A numerical study of Fe3O4-TiO2Ni/C2H6O2 modified nanofluid's flow through a stretched surface is presented in the current work with an applied angled magnetic field. In the subsequent form of hybrid nanofluid, known as modified nanofluid, three distinct suspended nanoparticles in a base fluid are taken into consideration. Iron Oxide, Nical, and Titanium Dioxide nanoparticles are suspended in ethanol glycol, which is used as a base liquid. One way to improve heat transfer rates in MHD flow over a stretched surface with variable viscosity is to utilize modified nanofluids. This is useful in a number of sectors, including energy systems, thermal management in aircraft, and cooling electronic systems.  By applying the proper similarity transformations, the Runga-Kutta fourth order technique encounters the mathematical framework of the flow. One important finding is that, in contrast to nanofluids and hybrid nanofluids, the modified nanofluid has a larger capacity for heat transmission. The modified nanofluid's heat transfer capabilities exhibit intriguing behavior that calls for more research on it. There are numerical solutions that are displayed graphically. Increases in the volume fraction parameter and the inclination angle parameter of the magnetic field have been found to cause a drop in the velocity field of the modified nanofluid.

Keywords

Article Statistics

Number of reads 210
Number of downloads 231

Share

Engineering Perspective
E-Mail Subscription

By subscribing to E-Newsletter, you can get the latest news to your e-mail.