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ABSTRACT 
 
In radiative heat transfer calculations, to determine the view factor between surfaces is crucial. Currently, the available technical 

literature on the subject lacks an analytical expression for estimating the view factor for combinations of triangular surfaces. An 

analytical solution requires the summation of multiple integrals, given the changes in the integration contours, which becomes more 

complex in irregular contours. This work aims to develop an expression for computing the view factor between 32 triangular geo-

metric configurations with a common edge and included angle θ. Very importantly, in modern engineering, mesh generators rarely 

use rectangles or squares (unless the overall geometry is a perfect cube), with triangular elements being the most commonly used 

elements. For comparison, 48 cases with diverse geometric relationships were calculated using the analytical solution (AS), numer-

ical integration using Simpson's multiple 1/3 rule (MSR), the Sauer graphical solution (SGS), and Bretzhtsov cross roots (BCR). 

From eight basic geometries, the view factor was computed for the remaining 24 combinations using the sum rule. In all cases, 

identical fit values were obtained for MSR and SGS with respect to AS, while BCR showed the best correlation in all cases exam-

ined. In all the cases evaluated, the BCR showed the best fits, with an error of ±6% in more than 90% of the sample

s, while the MSR showed an average dispersion of ±6% in 65% of the data. Given the practical nature of the contribution 

and the reasonable values of the fits obtained, the current proposal constitutes a suitable tool for application in thermal engineering. 
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1. Introduction 

In many engineering applications, radiative heat transfer between 

surfaces needs to be assessed. The view factor allows calculating the 

fraction of radiant energy emitted by one surface that reaches another. 

Therefore, the geometric relationship between two surfaces and its 

influence on the view factor has been the subject of research for dec-

ades. In previous work, various analytical and numerical solutions 

have been proposed for different configurations [1-5]. An expanded 

collection of view factors for over 340 different configurations is 

provided by Howell [6].  

Several methods are known in the literature for estimating view 

factors, including graphical, analytical, and visual methods. Further-

more, using the summation rule and the algebraic factor, view fac-

tors of already known geometries can be used to determine other 

view factors of derived or more complex geometries [7-10].  

The current increase in data processing in computational tech-

niques has enabled the use of commercial programs based on the 

Finite Element Method (FEM) to solve various heat transfer prob-

lems, including thermal radiation. Solutions for edge and border 

problems generally reduce to surfaces with a common edge and in-

cluded angle θ, for which analytical solutions are already known [11-

15]. However, in modern engineering, mesh generators rarely use 

rectangles or squares (unless the overall geometry is a perfect cube), 

with triangular elements being the most commonly used. 

The AS of the view factor between triangular geometries requires 

the summation of multiple integrals, given the changes in the inte-

gration contours, which makes it difficult to obtain solutions in com-

plex configurations. Numerical integration can be a partial solution 

to the problem; however, only a few contributions to the topic are 

available in the specialized literature [16].   

By numerical integration using the RMS and five intervals, the 

view factors for various triangular geometries with a common edge 

and an angle 𝜃 = 90° were obtained. The results for the most ele-

mentary ones were graphed and the remaining geometries derived 

using the summation rule [17]. SGS are useful, but they require the 

interpretation of graphs, which introduces reading and interpretation 

errors. Therefore, they are not suitable for generating triangular 

meshes and subsequently calculating view factors, as they lack an 
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analytical solution or a numerical approximation for their estimation. 

The BCR is a mathematical tool that allows for obtaining reason-

able fits in the approximations of complex functionals, in addition to 

generating an analytical expression that includes the boundary con-

ditions or unknowns to be addressed. Therefore, it can be used to 

calculate view factors without the need to use or interpret graphs. 

The method in question allows for fitting by sections or branches, 

with common nodes for several solutions [18, 19]. Its mathematical 

conception is similar to that of the FEM, making it suitable for this 

work. 

Currently, there is no analytical expression in the specialized lit-

erature that allows directly calculating the view factor for combina-

tions of triangular surfaces. In the expanded compilation of view fac-

tor configurations available for the case of finite triangular surfaces, 

it is verified that only Sauer's graphical results are used [6]. In other 

consulted sources, Sauer graphs are also presented for the determi-

nation of view factors [18, 20]. The above shows that currently there 

are no exact or approximate analytical solutions for the determina-

tion of view factors between triangular geometries with a common 

edge and included angle θ, which is the main objective of this work. 

Therefore, this research aims to develop approximate solutions 

that allow computing the view factor in various triangular geome-

tries. These solutions do not present high mathematical complexity 

and their correlation with respect to the AS provides a better fit than 

the SGS. This constitutes a new analytical method for application to 

the calculation of view factors using FEM and to constituting new 

expressions that can be included in existing catalogs. 

In this work, the exact analytical solutions for eight basic triangu-

lar geometries and their respective Bretzhtsov cross roots are given. 

For comparison, 48 examples with various aspect ratios were calcu-

lated for each geometry, using the AS, the numerical solution of the 

quadruple integral using the MSR with five intervals, the SGS and 

the view factors calculated using the BCR. From the eight basic ge-

ometries, the view factor for another 24 triangular geometries is ob-

tained using the summation rule. In all cases, identical fit values were 

obtained for RMS and SGS with respect to AS, while BCR showed 

the best fit in all cases examined, confirming the validity of the hy-

pothesis regarding its use. 

Given the practical nature of the contribution and the reasonable 

values of the fits obtained, the proposal presented in this work con-

stitutes a suitable tool for application in thermal engineering and re-

lated practices that require thermal radiation calculations. 

 

2. Materials and methods 

2.1 Basic considerations on the view factor 

The view factor is fundamental to the exchange of radiant energy. 

It depends on the configuration and position of the receiving and 

emitting surfaces, making its evaluation complex and, in many cases, 

generating erroneous results. Then, the view factor 𝐹12 is the frac-

tion of the radiation emitted by surface 𝐴1 that is intercepted by 

surface 𝐴2, expressed as [21]:  

 

𝐹12 =
1

𝜋𝐴1
∫ ∫

cos𝜃1 cos𝜃2

𝑟2
𝑑𝐴1 𝑑𝐴2

𝐴1
𝐴2

𝐴2
𝐴1

  (1) 

 

where 𝐴1 ,𝐴2 are the emitting and receiving surfaces, respec-

tively; 𝜃1, 𝜃2are the angles between the normal vector to the area 

𝑑𝐴1𝑑𝐴2 and the line joining the centers of surfaces 𝐴1, 𝐴2, respec-

tively; 𝑟 is the distance between the centers of surfaces 

𝐴1and 𝐴2 (see Figure 1). 

 

Figure 1. Basic geometry for view factor definition 

Eq. (1) includes double integration, which in many cases can be a 

very laborious mathematical problem. Therefore, calculating the 

view factor in any geometry requires handling a considerable 

amount of integrals and solving complex mathematical equations. 

To simplify the analysis, numerical approximations are used that 

provide adequate fits, with a reasonable margin of error, allowing for 

its application in practical engineering. For three-dimensional con-

figurations, several methods can be implemented to estimate the 

view factor, such as direct integration, contour integration, summa-

tion and reciprocity techniques, MSR, Monte Carlo, ray tracing, 

FEM, and matrix methods [22-28].  

In this investigation, the direct integration method was imple-

mented to obtain the view factors associated with the 32 configura-

tions studied. The BCR method was used to approximate the special 

functions generated in direct integration.  

 

2.2 Mathematical solution for the view factor 

The view factor between two finite rectangles of the same width 

with a common edge and included angle θ (see Figure 2) is given by: 

𝑓(1) =
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿

0 ∫ 𝑑𝑥
𝐷

0 ∫ 𝑑𝑧
𝑤

0 ∫
𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑦2
𝐷

0
  (2) 

To evaluate Eq. (2) the following definitions are used: 

𝑋 = 𝑊 𝐷⁄     ;      𝑌 = 𝐿 𝐷⁄     ;    𝑅 =

√𝑋2 + 𝑌2 − 2𝑋𝑌 cos 𝜃  
(3) 
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𝑓(1) = Fa−b =
1

πY

{
 
 
 
 

 
 
 
 −

sin 2𝜃

4
{𝑌2 tan−1 (

𝑋

𝑌
csc 𝜃 − cot 𝜃) + 𝑋2 tan−1 (

𝑌

𝑋
csc 𝜃 − cot 𝜃) + 𝑋𝑌 sin 𝜃 + (

𝜋

2
− 𝜃) (𝑋2 + 𝑌2)} +

+
1

4
ln {{

𝑋2

𝑅2
(
1+𝑋2

1+𝑅2
)
cos 2𝜃

}
𝑋2 sin2 𝜃

(
𝑌2+𝑌2𝑅2

𝑅2+𝑌2𝑅2
)
𝑌2 sin2 𝜃

(
(1+𝑋2)(1+𝑌2)

1+𝑅2
)
cos2 𝜃+1

} +

+(sin3 𝜃 cos 𝜃) tan−1 (
𝑌 sin 𝜃√𝑋2+cot2 𝜃+1

𝑋2−𝑌𝑋 cos𝜃+1 
)√𝑋4 + 𝑋2(cot2 𝜃 + 1) + +𝑋 tan−1 (

1

𝑋
) +

+𝑌 tan−1 (
1

𝑌
) + − 𝑅 cot−1(𝑅) +

sin 2𝜃

2
∫ √𝑧2 + cot2 𝜃 + 1 tan−1 (

𝑋 sin𝜃√𝑧2+cot2 𝜃+1

𝑧2−𝑧𝑋 cos𝜃+1
) 𝑑𝑧

𝑌

0 }
 
 
 
 

 
 
 
 

  (4) 

 
Figure 2. Rectangles with common edge and included angle θ 

Evaluating Eq. (2), the following solution is obtained [29]:  

In Eq. (2) and (4) the angle θ is given in radians. In a previous 

investigation [30], an expression similar to Equation (4) was ob-

tained to solve the quadruple integral given in Eq. (2), tabulating the 

values of the viewing factors for the angles θ = (30°; 45°; 60°; 90°; 

120°; 135°; 150°). These valueswere later corrected because they 

sometimes violated the summation rule [31-33].  

Eq. (4) is very complex. The last integral lacks primitives, so it 

was not possible to solve it. Therefore, its solution will be obtained 

using the MSR (with eight intervals). At each interval of the numer-

ical integration, the variable z is replaced by its corresponding frac-

tion of the length of the emitting surface L (see Table 1), obtaining a 

solution (𝜔𝑛)for each interval [29].  

 
Table 1. Definition of z-scores for the MSR in Eq. (4). 

0 Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 Int. 8 

0 0.125𝐿 0.25𝐿 0.375𝐿 0.5𝐿 0.625𝐿 0.75𝐿 0.875𝐿 𝐿 

𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9 
 

Therefore, the numerical evaluation of the last integral given in 

Eq. (4) can be calculated as: 

 

∫ {√1 + 𝑧2 sin2 𝜃 tan−1 (
𝑋√1+𝑧2 sin2 𝜃

𝑧2−𝑧𝑋 cos𝜃+1
)} 𝑑𝑧

𝑌

0
≅

𝐿

24
(𝜔1 +

𝜔9 + 2(𝜔3 +𝜔5 + 𝜔7) + 4(𝜔2 +𝜔4 +𝜔6 +𝜔8))  

(5) 

 
If 𝜃 = 90°, then Eq. (4) simplifies to the following relation: 
 

𝑓(1) =
1

𝜋𝑌
{𝑋 tan−1 (

1

𝑋
) +𝑌 tan−1 (

1

𝑌
) − 𝑅 cot−1(𝑅) +

1

4
ln {(

𝑋2+𝑋2𝑅2

𝑅2+𝑋2𝑅2
)
𝑋2

(
𝑌2+𝑌2𝑅2

𝑅2+𝑌2𝑅2
)
𝑌2

(
(1+𝑋2)(1+𝑌2)

1+𝑅2
)}}  

(6) 

 
In Eq. (6), the following definitions are used: 
 
𝑋 = 𝑊 𝐷⁄    ;    𝑌 = 𝐿 𝐷⁄    ;    𝑅 = √𝑋2 + 𝑌2  (7) 
 

Figure 3 shows graphically the solutions to Eq. (4) for values of 

𝜃 = (30°, 45°, 60°, 90°, 120°, 150°), in the intervals 0.1 ≤ 𝑌; 𝑋 ≤
10. For angle values 𝜃 ≠ (30°, 45°, 60°, 90°, 120°, 150°), the view 

factor can be obtained by interpolation. 
 

   

   

Figure 3. Fa−b values obtained with Eq. (4) for various values of θ. 
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Figure 4. Basic configurations for triangular surfaces 
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2.3 Mathematical solution for the view factor 

In modern engineering, mesh generators rarely use rectangles or 

squares, unless the overall geometry is a perfect cube. One of the 

most commonly used elements is triangular ones. The formulation 

of this type of geometry requires a mathematical approach that in-

cludes multiple sums of the quadruple integral. due to the variation 

of the projection contours on the coordinate axes. Diagonal lines can 

be extended over the rectangular surfaces in Figure 2, subdividing 

the rectangular plane domain into triangular elements (see Figure 4).  

 
Figure 5. Decomposition of triangular elements 

 

In Figure 5, the leaving and reaching surfaces 𝐴𝑎and 𝐴𝑏are di-

vided into four triangular surfaces, with 64 possible combinations. 

The reciprocity of the viewing factors establishes that 𝐴𝑎𝐹𝑎−𝑏 =
𝐴𝑏𝐹𝑏−𝑎 ; therefore, only 32 combinations will be evaluated. The 

basic geometries (Cases 1 to 8) and derived geometries (Cases 9 to 

32) are given in Figure 4. The basic geometries (Cases 1 to 8) con-

stitute the basis of the study conducted, as the remaining combina-

tions can be generated from them using the summation rule.  

2.4 Mathematical modeling of the view factor 
 
2.4.1 Case 2 

In Case 2, the emitting and receiving surfaces are a rectangle and 

a right triangle, respectively, with common side D and angle θ be-

tween both surfaces. In Case 2 (see Figure 6), the integration limits 

are set for each projection on surfaces 𝐴1and 𝐴2, obtaining the fol-

lowing relation: 

 
𝑓(2) =

sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿

0
∫ 𝑑𝑥
𝑦1𝐷

𝐿
0

∫ 𝑑𝑧
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑦2
𝐷

0
  

(8) 

 
Figure 6. Basic Geometry for Case 2 

 

The solution of Eq. (8) is given by:

 

𝑓(2) = 2𝑓(1) {
𝑋2

2(𝑋2+1)2
ln {(

1

𝑋
)
2𝑋2

(
𝑋2+𝑌2

𝑌2+1
) (

1

𝑋(𝑋2+𝑌2)
)
(𝑋2+1)

} +
1

4
𝑋2 ln {(

𝑋6

(𝑋2+1)2
) (

𝑋2+𝑌2+1

𝑋2+𝑌2
)} − −√𝑋2 + 𝑌2 tan−1 (

1

√𝑋2+𝑌2
) +

1

4
ln {(𝑋2 + 1) (

𝑌2+1

𝑋2+𝑌2+1
)} +

1

4
𝑌2 ln {

𝑌4(𝑋2+𝑌2+1)

(𝑌2+1)(𝑋2+𝑌2)2
} +𝑌 tan−1 (

1

𝑌
) + +

(𝑋2+1)(𝑋4+3𝑋2)+2𝑋𝜋(𝑋2−
1

2
(3𝑋2+1))

4(𝑋2+1)2
+

𝑋3(
1

𝑋2+1
−𝑌2−1)

(𝑋2+1)
3
2√𝑋2𝑌2−

𝑋2

𝑋2+1
+𝑋2

tan−1 (
𝑋(𝑋2+1)

3
2√𝑋2𝑌2−

𝑋2

𝑋2+1
+𝑋2

(𝑋2+1)(𝑋2𝑌2−
𝑋2

𝑋2+1
+𝑋2)−𝑋4

) + +
3

2
𝑋 tan−1 (

1

𝑋
) +

𝑋2

4(𝑋2+1)
ln {

𝑌2+1

(𝑋2+𝑌2)𝑋
2} +

𝑋2𝑌2

4(𝑋2+1)
ln {

𝑋2+2𝑌2+1

𝑌2(𝑋2+𝑌2)
+

1} − −
1

𝑋
∫ {

𝑧2

√𝑧2+𝑌2
tan−1 (

√𝑧2+𝑌2

1

𝑋2
(𝑧2−𝑋𝑧)+𝑧2+𝑌2

) +
𝑧

√𝑧2+𝑌2
tan−1 (

𝑧

𝑋
−1

√𝑧2+𝑌2
)} 𝑑𝑧

𝑋

0
}  

(9) 

In Eq. (9) the term 𝑓(1)is the view factor computed with Eq. (4). 

Solving Eq. (8) requires solving 𝑛𝑛 = 44 = 256 primitive func-

tions. However, the last integral was not solved because no primitive 

functions existed for it, requiring a solution using the MSR (with 

seven intervals). Obtaining an analytical solution to Eq. (8) is ex-

tremely complex, as it involves the summation of infinite series with 

polylogarithms. An alternative solution is to treat these special func-

tions as complex variables, with the addition of polynomials, which 

progressively tend toward convergence of the infinite Spence series, 

using BCR. Case 2 was obtained from the decomposition of rectan-

gular surfaces into triangular elements (see Figure 4); therefore, the 

solution to the quadruple integral of Eq. (8) is derived from Eq. (4) 

and can be expressed as: 

 

𝐹1−2 = 𝜑 ∙ 𝑓(1) (10) 

where 𝑓(1) is the view factor computed with Equation (4) and φ 

is the BCR. 

The BCR is obtained from a stationary sum of view factors, fitting 

the family of curves generated in the evaluated domain using poly-

nomials. There will be as many curves to fit as terms considered in 

the sum of the series of polylogarithms; therefore, the increase in the 

intervals will be proportional to the accuracy obtained in the results. 

In Equation (4), it is observed that the view factor depends on two 

parameters 𝑋, 𝑌 with a common denominator D; therefore, the real 

root will be a function of these. The common side D is opposite to 

the dimensions 𝑊, 𝐿 on the surfaces 𝐴𝑎 and 𝐴𝑏, which indicates 

that the period of the complex function is given by [18]:  

 

𝜓 = tan−1(𝑋 𝑌⁄ ) (11) 
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To apply the BCR, the solution to Eq. (10) is graphically repre-

sented in the interval 0.1 ≤ 𝑋 ≤ 10  and 0.1 ≤ 𝑌 ≤ 10 using 

values 𝑋 = 𝑌 = (0.1;  0.3;  0.6;  1;  3;  6;  10) for its con-

struction. Therefore, from the upper and lower nodes, it is possible 

to draw the curve corresponding to the minimum and maximum val-

ues of 𝑌 = (0.1 ; 10). In the infinite polylogarithmic series, a value 

of Y is fixed, and subsequently the polylogarithms are calculated for 

each value of X; with this procedure, a family of curves 𝑎 is ob-

tained. Next, a similar procedure is applied, but fixing the values of 

X when calculating the polylogarithms for each value of Y, thus ob-

taining a family of curves 𝑏. Curves a and b are approximated indi-

vidually using the least squares method, generating polynomials of 

the form 𝑚𝑋3 + 𝑛𝑋2 + 𝑜𝑋 + 𝑝. The constants 𝑚,𝑛, 𝑜, 𝑝 are sub-

sequently weighted to generate a single function φ, which depends 

on the forming angle ψ [19]. Applying the method described in the 

previous paragraph, the BCR for Case 2 is given by: 

 

𝜑2 = (−0,022Y
3 + 0,316Y2 − 0,89Y + 0,5)𝜓2 +

(0,056Y3 − 0,783Y2 + 2,23Y − 1,43)𝜓 − 0,03Y3 +
0,407Y2 − 1,07Y + 2,02  

(12) 

 

Substituting Eq. (4) and (12) in Eq. (11), the view factor for Case 

2 is obtained through the BCR, which is given by the following re-

lation: 

 

𝑓(2) = 𝐹(1−2) = 𝜑2 ∙ 𝑓(1) (13) 

 

Figure 7 presents graphically the solution of Eq. (13) for 𝜃 = 90°. 

 

2.4.2 Cases 3 to 8 

Cases 3 to 8 are reduced to the following geometries: 

Case 3: right triangle to right triangle, with a common side and 

angle θ between both surfaces: vertices at a common point 

Case 4: right triangle to right triangle, with a common side and 

angle θ between both surfaces: vertices at opposite ends 

Case 5: isosceles triangle to right triangle, with a common side 

and angle θ between both surfaces 

Case 6: right triangle to right triangle of different sizes, with angle 

θ between both surfaces: vertices at a common point 

Case 7: right triangle to right triangle of different sizes, with angle 

θ between both surfaces: vertices at opposite ends 

Case 8: perpendicular right triangles with an equal edge and ar-

ranged in opposite directions.  

In Cases 3 to 8 (see Figure 5), the integration limits are established 

for each projection on surfaces 𝐴1and 𝐴2, obtaining the following 

integral relations: 

 

Figure 7. Graphical solution of Eq. (13) for 𝜃 = 90° 
 

Case 3 𝑓(3) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿

0
∫ 𝑑𝑥
𝑦1𝐷 𝐿⁄

0
∫ 𝑑𝑦2
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑧
𝑦2𝐷 𝑊⁄

0
  (14) 

Case 4 𝑓(4) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿

0
∫ 𝑑𝑥
𝑦1𝐷 𝐿⁄

0
∫ 𝑑𝑦2
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑧
𝑦2𝐷 𝑊⁄

0
  (15) 

Case 5 𝑓(5) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿 2⁄

0
∫ 𝑑𝑥
𝑦1𝐷 𝐿⁄

0
∫ 𝑑𝑧
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑦2
𝑍

0
  (16) 

Case 6 𝑓(6) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿 2⁄

0
∫ 𝑑𝑥
𝑦1𝐷 𝐿⁄

0
∫ 𝑑𝑦2
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑧
𝑦2𝐷 𝑊⁄

0
  (17) 

Case 7 𝑓(7) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿 2⁄

0
∫ 𝑑𝑥
0

−𝑦1𝐷 𝐿⁄
∫ 𝑑𝑦2
𝑊

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑧
𝑦2𝐷 𝑊⁄

0
  (18) 

Case 8 𝑓(8) =
1

𝜋𝐴1
∬

cos𝑂1 cos𝑂2 𝑑𝐴1𝑑𝐴2

𝑟2
=
sin2 𝜃

𝜋𝐴1
∫ 𝑑𝑦1
𝐿 2⁄

0
∫ 𝑑𝑥
0

−𝑦1𝐷 𝐿⁄
∫ 𝑑𝑦2
𝑊 2⁄

0
∫

𝑥𝑧

{(𝑦1−𝑦2)
2+𝑥2+𝑧2−2𝑥𝑧 cos𝜃}2

𝑑𝑧
𝑦2𝐷 𝑊⁄

0
  (19) 

The BCR for each case are given by: 

Case 3 
𝑓(3) = 𝑓(1) ∙ {(−0,001Y

3 + 0,033Y2 − 0,14Y + 0,265)𝜓2 + (0,011Y3 − 0,177Y2 + 0,7Y − 0,615)𝜓 − 0,01

Y3 + 0,142Y2 − 0,475Y + 1,29}  
(20) 

Case 4 
𝑓(4) = 𝑓(1) ∙ {(−0,031Y

3 + 0,424Y2 − 1,275Y + 1,1)𝜓2 + (0,071Y3 − 0,975Y2 + 2,92Y − 2,06)𝜓 − 0,034

Y3 + 0,462Y2 − 1,268Y + 1,6}  

(21) 

Case 5 𝑓(5) = 𝑓(1) ∙ {(−0,01Y
2 + 0,24Y + 0,67)𝜓2 + (0,02Y2 − 0,31Y − 2,2)𝜓 − 0,02Y2 + 0,27Y + 3} (22) 
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Case 6 
𝑓(6) = 𝑓(1) ∙ {(−0,02Y

3 + 0,29Y2 − 1,1Y + 0,6)𝜓2 + (0,06Y3 − 0,88Y2 + 2,96Y − 1,41)𝜓 − 0,04Y3 + 0,55

Y2 + 1,41Y + 1,87}  

(23) 

Case 7 
𝑓(7) = 𝑓(1) ∙ {(−0,011Y

3 + 0,12Y2 − 0,025Y + 0,52)𝜓2 + (0,025Y3 − 0,307Y2 + 0,49Y − 1,64)𝜓 − 0,014

Y3 + 0,183Y2 − 0,35Y + 2,47}  

(24) 

Case 8 
𝑓(8) = 𝑓(1) ∙ {(0,015Y

2 − 0,108Y + 0,08)𝜓2 + (−0,015Y2 + 0,096Y + 0,048)𝜓 − 0,001Y2 + 0,04Y + 0

,058}  
(25) 

Figure 8 gives a graphical solution to Eq. (20) to (22), for 𝜃 = 90°. 

   

Figure 8 Graphical solutions of Equations (20) to (22) for θ = 90°. 

 

Figure 9 gives a graphical solution to Eq. (23) to (25), for 𝜃 = 90°. 

   
Figure 9 Graphical solutions of Equations (22) to (25) for θ = 90°. 

 

2.4.3 Cases 9 to 32 
 

By combining the view factors 𝑓(1) to 𝑓(8) it is possible to ob-

tain the view factors for Cases 9 to 32 by applying the summation 

rule and the algebra of view factors. Table 2 summarizes the rela-

tionships for computing the view factor in the derived configurations 

(see Figure 4).  
 

3 Analysis of Results 

The percentage of deviation (error) is calculated with respect to 

the AS and computed as follows: 
 

𝐷% = 100 ∙ (
𝑆𝐴 − 𝑉𝑎𝑙

𝑆𝐴
) (26) 

 

Where: 𝐷% is the percentage of deviation, in %, AS is the view 

factor computed using the analytical solution, and 𝑉𝑎𝑙 is the view 

factor obtained using other methods. 

 

Figure 10. D% values computed for Case 2 
 

Figure 10 shows the 𝐷% obtained with Eq. (26) for 42 view fac-

tors in the range 0.1 ≤ 𝑋, 𝑌 ≤ 10 calculated with MSR and BCR 

for Case 2, plotted in error bands of ±3% and ±6%. 
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For Case 2, Figure 10 shows that the BCR provides a better fit 

with respect to the AS, with a mean error of ±3% and ±6% for 80.8% 

and 100% of the points (Y,X) analyzed. In contrast, the view factors 

obtained with MSR provide a weaker fit respect to the AS, with 

mean errors of ±3% and ±6% for 42.9% and 88.1% of the points 

(Y,X) evaluated, respectively. 

 
 
 
 
 

 

  

  

  
Figure 11. 𝐷%values for Cases 3 to 8.

Figure 11 shows the 𝐷% obtained using Eq. (26) for 42 view fac-

tors in the range 0.1 ≤ 𝑋, 𝑌 ≤ 10, calculated using MSR and BCR 

for Cases 3 to 8, in error bands of ±3% and ±6%.  

For Case 3, Figure 11 shows that the BCR provides the best fit 

with respect to the AS, with an average error of ±3% and ±6% in 

85.7% and 100% of the points (Y,X) analyzed. In contrast, the view 

factors obtained using MSR produce a weaker fit with respect to the 

AS, with average errors of ±3% and ±6% in 45.2% and 81.1% of the 

points (Y, X) evaluated, respectively.  

For Case 4, Figure 11 shows that the BCR provide a better fit than the 

AS, with mean errors of ±3% and ±6% in 76.2% and 100% of the points 

(Y,X) analyzed, while the view factors obtained with MSR provide a 

weaker fit with respect to the AS, computing mean errors of ±3% and 

±6% in 47.6% and 90.5% of the points (Y,X) evaluated, respectively. 

For Case 5, Figure 11 shows that the BCR provide a better fit with 

respect to the AS, with mean errors of ±3% and ±6% in 90.5% and 

100% of the points (Y,X) analyzed. In contrast, the view factors ob-

tained with MSR provide a weaker fit with respect to the AS, with 

mean errors of ±3% and ±6% in 50% and 78.6% of the points (Y,X) 

evaluated, respectively. 
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For Case 6, Figure 11 shows that the BCR provide a better fit with 

respect to the AS, with mean errors of ±3% and ±6% in 83.3% and 

100% of the points (Y,X) analyzed, while the view factors obtained 

with MSR provide a weaker fit with respect to the AS, computing 

mean errors of ±3% and ±6% in 35.7% and 88.9% of the points 

(Y,X) evaluated, respectively.  

For Case 7, Figure 11 shows that the BCR provide a better fit 

compared to the AS, with mean errors of ±3% and ±6% at 90.5% 

and 100% of the points (Y,X) analyzed. In contrast, the view factors 

obtained with MSR provide a weaker fit compared to the AS, with 

mean errors of ±3% and ±6% at 61.9% and 95.2% of the points 

(Y,X) evaluated, respectively.  

For Case 8, Figure 11 shows that the BCR provide a better fit with 

respect to the AS, with mean errors of ±3% and ±6% in 76.2% and 

100% of the points (Y,X) analyzed, while the view factors obtained 

with MSR provide a weaker fit with respect to the AS, computing 

mean errors of ±3% and ±6% in 40.5% and 81.1% of the points 

(Y,X) evaluated, respectively. 
 

Table 2. View factor for Cases 9 to 32. 

 
 
 
 
 
 
 
 

4. Conclusions 
 

Determining the view factor is one of the most important features 

during analysis of radiant energy exchange, since an analytical solu-

tion considerably facilitates the work of thermal engineers, allowing 

its rapid and accurate estimation. This work has provided insight into 

the development of methods for calculating the view factor during 

radiant energy exchange between 32 combinations of triangular ge-

ometries with a common edge. 

Twelve examples with various aspect ratios were calculated for 

each geometry, using AS, MSR, SGS, and BCR. From the eight 

basic geometries, the view factor was obtained for 24 other triangu-

lar geometries using the summation rule. In all cases, identical fit 

values were obtained for MSR and SGS with respect to AS, while 

BCR showed the best correlation in all cases examined. In all the 

cases evaluated, the BCR showed the best fits, with an error of ±6% 

in more than 90% of the samples, while the MSR showed an average 

dispersion of ±6% in 65% of the data 

Given the practical nature of the contribution and the reasonable 

values of the fits obtained, the proposal constitutes a suitable tool for 

application in thermal engineering and related practices requiring 

thermal radiation calculations. 

Very importantly, in modern engineering, mesh generators rarely 

use rectangles or squares (unless the overall geometry is a perfect 

cube), with triangular elements being the most commonly used ele-

ments. 

Given the lack of similar precedents in the literature, the proposed 

analytical solutions reinforce the scientific and practical value of this 

research and can be incorporated into the currently available catalogs 

for calculating the view factor. 
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Nomenclature 

 

 

Case 𝐹1−2⋯{𝑓(𝑛)} 

Case 9 𝑓(9) = 𝑓(5) 

Case 10 𝑓(10) = 𝑓(5) 

Case 11 𝑓(11) = 2𝑓(1) − 𝑓(2) 

Case 12 𝑓(12) = 𝑓(6) + 𝑓(7) 

Case 13 𝑓(13) = 2𝑓(2) − 𝑓(5) 

Case 14 𝑓(14) = 4𝑓(1) + 𝑓(5) − 4𝑓(2) 

Case 15 𝑓(15) = 2𝑓(4) − 𝑓(6) − 𝑓(7) 

Case 16 𝑓(16) = 4𝑓(1) + 𝑓(6) + 𝑓(7) − 2𝑓(3) − 2𝑓(4) 

Case 17 𝑓(17) = 2𝑓(3) − 𝑓(6) − 𝑓(7) 

Case 18 𝑓(18) = 𝑓(3) + 𝑓(8) 

Case 19 𝑓(19) = 𝑓(6) + 𝑓(7) − 𝑓(3) − 𝑓(8) 

Case 20 𝑓(20) = 4𝑓(5) + 𝑓(3) + 𝑓(8)−2𝑓(6) − 2𝑓(7) 

Case 21 𝑓(21) = 3𝑓(3) + 𝑓(8) − 2𝑓(6) − 2𝑓(7) 

Case 22 𝑓(22) = 4𝑓(1) + 3𝑓(6) + 3𝑓(7) − 3𝑓(3) − 2𝑓(4) − 4𝑓(5)

− 𝑓(8) 

Case 23 𝑓(23) = 4𝑓(5) + 𝑓(3) + 𝑓(8)−2𝑓(6) − 2𝑓(7) 

Case 24 𝑓(24) = 5𝑓(3) + 4𝑓(4) + 5𝑓(5) + 𝑓(8) − 4𝑓(1) − 4𝑓(2)

− 4𝑓(6) − 4𝑓(7) 

Case 25 𝑓(25) = 2𝑓(1) + 𝑓(4) − 2𝑓(2) 

Case 26 𝑓(26) = 2𝑓(1) + 𝑓(3) − 2𝑓(2) 

Case 27 𝑓(27) = 𝑓(2) − 𝑓(3) 

Case 28 𝑓(28) = 𝑓(2) − 𝑓(4) 

Case 29 𝑓(29) = 𝑓(5) − 𝑓(6) − 𝑓(7) 

Case 30 𝑓(30) = 2𝑓(3) + 2𝑓(4) + 𝑓(5) − 4𝑓(2) − 𝑓(6) − 𝑓(7) 

Case 31 𝑓(31) = 2𝑓(2) + 𝑓(6) + 𝑓(7) − 𝑓(5) − 2𝑓(4) 

Case 32 𝑓(32) = 2𝑓(2) ++𝑓(6) + 𝑓(7) − 𝑓(5) − 2𝑓(3) 

𝑎 Length of the surface 𝐴1, 𝑚 

𝐴1 Leaving surface, 𝑚2 

𝐴2 Reaching surface, 𝑚2 

𝐷 Width of the surfaces 𝐴1and 𝐴2, 𝑚 

𝐷% percentage of deviation, defined in Eq. (26) 

𝐿 Length of the surface 𝐴1, 𝑚 

𝑟 Distance between surfaces 𝐴1 and 𝐴2, 𝑚 

𝑅 Constant, defined in Eq. (3) 

𝑥 displacement at surface 𝐴2, defined in Fig. 4 

𝑊 Length of the surface 𝐴2, 𝑚 

𝑋 Constant, defined in Eq. (3) 

𝑌 Constant, defined in Eq. (3) 

  

𝜃 Angle between surfaces 𝐴1and 𝐴2 

𝜃1 Angle between the normal and surface 𝐴1 

𝜃2 Angle between the normal and surface 𝐴2 

 𝜑 Bretzhtsov cross roots 
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